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Abstract
We show that in clean chaotic cavities the power of shot noise takes a universal
form. Our predictions go beyond previous results from random-matrix theory,
in covering the experimentally relevant case of few channels. Following a
semiclassical approach we evaluate the contributions of quadruplets of classical
trajectories to shot noise. Our approach can be extended to a variety of transport
phenomena as illustrated for the crossover between symmetry classes in the
presence of a weak magnetic field.

PACS numbers: 73.23.−b, 72.20.My, 72.15.Rn, 05.45.Mt, 03.65.Sq

(Some figures in this article are in colour only in the electronic version)

Ballistic chaotic cavities have universal transport properties, just as do disordered conductors.
The explanation of such universality cannot rely on any disorder average but must make do
with chaos in an individual clean cavity. We shall present here the semiclassical explanation
of shot noise, relating the quantum properties of chaotic cavities to the interference between
contributions of mutually close classical trajectories. Similar methods have recently been
used for explaining universal spectral fluctuations of chaotic quantum systems [1, 2], and to
calculate the universal mean conductance in [3, 4].

Following Landauer and Büttiker [6, 7], we treat transport as scattering between two
leads attached to the cavity. One lead is assumed to support N1 ingoing channels and the
second one N2 outgoing channels. In contrast to the random-matrix treatment of [5, 7]
and work on quantum graphs in [8], our results cover all orders in the inverse number of
channels, N = N1 + N2, and thus apply to the experimentally relevant case of few channels
[9]. Previously unknown and surprisingly simple expressions for the shot noise arise, both
with and without time reversal invariance (see equation (11) below).

We shall invoke the semiclassical limit (formally h̄ → 0). On the other hand, the Ehrenfest
time TE ∼ log const

h̄
is assumed to be much smaller than the average dwell time, which means

that bringing h̄ to zero must be accompanied by suitably shrinking the cavity openings. Most
recent investigations of corrections connected with a finite ratio of Ehrenfest time and dwell
time can be found in [10, 11].
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The transition amplitudes between ingoing channels a1 and outgoing channels a2 define
an N1 × N2 matrix t = {ta1a2}. That matrix determines the power of shot noise as

P = 〈Tr(t t † − t t †t t †)〉, in units 2e3|V |
πh̄

depending on the voltage V ; for us, 〈· · ·〉 denotes
an average over a small energy interval. Previous work had involved averages over ensembles
of matrices t and obtained [5, 7]

P = N2
1 N2

2

N3
+

(
2

β
− 1

)
N1N2(N1 − N2)

2

N4
+ O

(
1

N

)
. (1)

Here β = 1 refers to the so-called òrthogonal case’ of time-reversal invariant dynamics; if a
magnetic field is applied to break time-reversal invariance (‘unitary case’, β = 2), the second
(‘weak localization’) term disappears. Higher orders in 1

N
are as yet unknown, apart from the

case N1 = N2 = 1 [12].
In the semiclassical limit each transition amplitude ta1a2 is given by a sum over trajectories

α leading from an ingoing channel a1 to an outgoing channel a2, ta1a2 ∼ ∑
α(a1→a2)

Aα√
TH

eiSα/h̄

[13]. All relevant trajectories have the same entrance and the same exit angles determined by
the ingoing (a1) and outgoing (a2) channels, respectively. The phase of each contribution is
proportional to the classical action Sα while the factor Aα reflects the stability of the trajectory;
TH denotes the Heisenberg time TH = �

(2πh̄)f −1 , with � being the volume of the energy shell
and f the number of freedoms.

With the transition amplitudes thus semiclassically approximated, the quadratic term
〈Tr(t t †)〉 becomes a double sum over trajectories. That double sum, which actually is the
mean conductance, was evaluated in [4] as N1N2

N−1+2/β
. The quartic contribution to shot noise

turns into a sum over quadruplets of trajectories,

〈Tr(t t †t t †)〉 =
∑
a1,c1
a2,c2

ta1a2 t
∗
c1a2

tc1c2 t
∗
a1c2

= 1

T 2
H

〈∑
a1,c1
a2,c2

∑
α,β,γ,δ

AαA∗
βAγ A∗

δei(Sα−Sβ +Sγ −Sδ)/h̄

〉
. (2)

Here a1, c1 = 1, . . . , N1 and a2, c2 = 1, . . . , N2 represent ingoing and outgoing channels,
connected by the trajectories α, β, γ, δ like α (a1 → a2), β (c1 → a2), γ (c1 → c2), δ (a1 →
c2). The sum is dominated by quadruplets where the trajectories β and δ have approximately
the same cumulative action as α and γ , such that the action difference �S ≡ Sα −Sβ +Sγ −Sδ

is of the order h̄. The contributions of other quadruplets interfere destructively.
Diagonal contribution. The simplest quadruplets have either α = β, γ = δ, or

α = δ, β = γ [8]; their action difference vanishes. The first case has coinciding ingoing
channels a1 and c1 and contributes

〈Tr(t t †t t †)〉 α=β
γ=δ

= 1

T 2
H

∑
a1

a2,c2

∑
α(a1→a2)
γ (a1→c2)

|Aα|2|Aγ |2. (3)

The foregoing sum can be done using ergodicity. As shown in [3], summing all trajectories
between two fixed channels amounts to integrating over the dwell time T,∑

α(a1→a2)

|Aα|2 =
∫ ∞

0
dT e− N

TH
T = TH

N
, (4)

where e− N
TH

T is the probability for the trajectory to dwell in the cavity up to the time T, and
N
TH

the rate of escape.
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Figure 1. Quadruplet of trajectories α, β, γ, δ differing by their connections inside a 2-encounter
(in the box). Initial and final points marked by channel indices a1, c1, a2, c2. The durations are
tenc for the encounter and t1, t2, t3, t4 for the loops.

To proceed with equation (3) we invoke the Richter/Sieber sum rule (4) twice and
afterwards sum over all N1N

2
2 possible combinations of channels with a1 = c1. Similarly,

the case α = δ, β = γ leads to N2
1 N2 combinations with coinciding outgoing channels

a2 = c2. Altogether, these so-called diagonal contributions sum up to N2
1 N2+N1N

2
2

N2 = N1N2
N

.
In the unitary case, they cancel with 〈Tr(t t †)〉 such that shot noise must be entirely due to
different quadruplets of trajectories.

2-encounters. The first family of such quadruplets, depicted in figure 1, was identified by
Schanz, Puhlmann and Geisel for quantum graphs [8]. Here, the trajectories α and γ approach
each other in a ‘2-encounter’: a stretch of α comes so close in phase space to a stretch of γ

that the motion over the two stretches is mutually linearizable. The remaining parts of α and γ

will be called ‘loops’. Assuming that all loops have non-vanishing length (encounter stretches
do not ‘stick out’ into the leads), one finds two further trajectories, β and δ, which practically
coincide with α and γ inside the loops but are differently connected in the encounter: The
trajectory β closely follows the initial loop of α and the final loop of γ , whereas δ follows
the initial loop of γ and the final loop of α. Obviously, the cumulative action of β and δ

approximately coincides with the action of α and γ , with the action difference exclusively
determined by the encounter region.

Each encounter influences the survival probability. If a particle stays in the cavity along the
first encounter stretch it cannot escape during the second stretch either, since the two stretches
are close to each other. The trajectories α and γ are thus exposed to the danger of getting lost
only on the four loops (see figure 1) and on one encounter stretch. Denoting the duration of
the latter stretch by tenc, we can write the overall exposure time as Texp = t1 + t2 + t3 + t4 + tenc.
That exposure time is smaller than the cumulative duration Tα + Tγ of α and γ , by a second
summand tenc for the second encounter stretch. The probability that both α and γ stay inside

the cavity reads e− N
TH

Texp , larger than the naive estimate e− N
TH

(Tα+Tγ ). In brief, encounters hinder
escape [4].

To describe the geometry of encounters, we consider a Poincaré section P in the energy
shell, through an arbitrary point of α. If P cuts through an encounter, as in figure 1, it
must intersect γ in a point close to the reference point on α. Assuming two freedoms we
decompose the separation between both points into components s, u along the stable and
unstable manifolds [2]. Both s and u must be small, |u| < c, |s| < c, with c some classically
small constant. The components s and u fix the action difference as �S = su and the encounter
duration as tenc = 1

λ
ln c2

|su| , where λ is the Lyapunov constant [2].
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Using ergodicity, we count the encounters within trajectory pairs. The probability density
for γ to pierce through P at a specified time with phase-space separations s and u is uniform
and given by the inverse of the volume of the energy shell �. To capture all encounters,
we integrate that density over (i) the time of piercing on γ and (ii) the time of the reference
piercing on α. The probability for P to cut an encounter is proportional to the duration tenc,
which we divide out to get the number of encounters [2]. Changing the integration variables
to the loop durations t1 and t3, we get the weight function

w(s, u) =
∫ Tα−tenc(s,u)

0
dt1

∫ Tγ −tenc(s,u)

0
dt3

1

�tenc(s, u)
. (5)

Here the upper boundaries, depending on the dwell times Tα, Tγ of α and γ , make sure that
the loop durations t2 and t4 remain positive. The density w(s, u) is normalized such that∫

ds duw(s, u)δ(su−�S) is the number density of 2-encounters with fixed action difference
�S.

To account for all quadruplets of figure 1, we do the sum over β, δ in (2) by integrating
with the weight w(s, u),

〈Tr(t t †t t †)〉2-enc = 1

T 2
H

〈∑
a1,c1
a2,c2

∫
ds du

∑
α,γ

|Aα|2|Aγ |2w(s, u) eisu/h̄

〉
, (6)

approximating AβAδ ≈ AαAγ .3 Now, similarly to (4), we replace the sum over α, γ by an
integral over the dwell times or, equivalently, over the loop durations t2 and t4. The integrand

must be weighted with the probability e− N
TH

Texp for both trajectories to remain inside the cavity.
Regarding the sum over channels a1, a2, c1, c2 one might expect a factor N2

1 N2
2 . However,

when both the ingoing channels and the outgoing channels coincide, a1 = c1, a2 = c2, each
of the two dashed trajectories in figure 1 could be chosen as β or δ, such that the resulting
contributions are doubled. Including such combinations for a second time, we get the factor
N1N2(N1N2 + 1). Altogether, we thus find

〈Tr(t t †t t †)〉2-enc = N1N2(N1N2 + 1)

T 2
H

〈 ∞∫
0

dt1 dt2 dt3 dt4

×
∫

ds du
1

�tenc(s, u)
e− N

TH
[t1+t2+t3+t4+tenc(s,u)] e

isu
h̄

〉
. (7)

The integral factors into four independent integrals over the loop durations,∫ ∞
0 dti e− N

TH
ti = TH

N
, and one integral over the separations s, u inside the encounter,∫

ds du 1
�tenc(s,u)

e− N
TH

tenc(s,u) eisu/h̄ h̄→0−→ − N

T 2
H

as shown in [4]. Since all powers of TH mutually

cancel, the following diagrammatic rule arises: each loop gives rise to a factor 1
N

, and an
encounter contributes a factor −N . The rule yields −1/N3; upon multiplying with the number
of possible combinations of channels, we get

−〈Tr(t t †t t †)〉2-enc = N1N2(N1N2 + 1)

N3
, (8)

i.e., for N1, N2 
 1 the leading shot-noise term in (1).
All orders. To go beyond the leading term, we have to account for all quadruplets of

trajectories differing in arbitrarily many encounters, each involving arbitrarily many stretches;

3 This approximation is justified because the stability amplitudes of α and γ can be approximated as products of
contributions from loops and stretches, practically coinciding with those of β and δ.
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(a) (b) (c) (d )

Figure 2. Families of trajectory quadruplets α, β, γ, δ responsible for the next-to-leading (‘weak
localization’) contribution to shot noise (drawn similar as in figure 1, but without the cavity). Each
picture represents either four or two similar families of quadruplets. Arrows indicate the direction
of motion inside the encounters (thick lines), and highlight loops which are traversed in opposite
direction by (α, γ ) and (β, δ).

figure 2 shows a few examples. In the unitary case we must consider encounters where several
stretches of either α or γ , or both, come close in phase space, whereas in the presence of
time-reversal invariance the stretches may also be nearly mutually time-reversed.

The contributions of all families of quadruplets obey the above diagrammatic rule. To
show this, we describe each l-encounter (encounter of l stretches) by l − 1 pairs of coordinates
sj , uj , j = 1, . . . , l − 1 [2] measuring the separations of l − 1 stretches from one reference
stretch. These coordinates determine both the duration of each encounter stretch and its
contribution

∑l−1
j=1 sjuj to the action difference. The analog of the density w(s, u) in (5)

obtains a factor 1
�l−1tenc(s,u)

from each l-encounter. The resulting product must be integrated
over the durations of all loops, with integration over the final loops of α and γ coming into
play through the summation over α and γ as in (7). Finally, the contribution of each family
factors into ‘loop’ and ‘encounter’ integrals similar to those in (7). After cancellation of all
powers of TH , the diagrammatic rule comes about, with a factor 1

N
from each loop and a factor

−N from each encounter.
Again, we have to multiply the result with the number of possible combinations of

channels. Two cases must be distinguished. First, let us consider trajectory quadruplets as
in figures 2(a)–(c) where, similarly to figure 1, the partner trajectories β and δ connect the
initial point of α to the final point of γ , and the initial point of γ to the final point of α. Such
quadruplets will be called x-quadruplets. For them, the channels a1, c1, a2, and c2 may be
chosen arbitrarily and allow for N1N2(N1N2 + 1) combinations.

In contrast, figure 2(d) depicts a quadruplet where the partner trajectories connect the
initial point of α to the final point of α, and the initial point of γ to the final point of γ , similarly
to the diagonal contribution. We speak of a d-quadruplet then. The partner trajectories now
connect the leads as a1 → a2, c1 → c2. Since for shot noise we need partner trajectories
β (a1 → c2) , δ (c1 → a2) , d-quadruplets contribute only if either the two ingoing channels,
or the two outgoing channels (and thus the corresponding angles of incidence) coincide. As
for the diagonal contribution, we thus obtain N2

1 N2 +N1N
2
2 = NN1N2 possible combinations.

Our diagrammatic rules determine 〈Tr(t t †t t †)〉 as

〈Tr(t t †t t †)〉 = N1N2(N1N2 + 1)

N2

∞∑
m=1

xm

Nm
+

N1N2

N

{
1 +

∞∑
m=1

dm

Nm

}
. (9)

Towards explaining xm and dm we denote the number of encounters in a quadruplet by V

and the total number of the encounter stretches by L. Then xm is the number of families of
x-quadruplets with m = L − V and even V , minus the number of corresponding families
with odd V ; dm is the analogous number of d-families. We note that the contribution of each
family is proportional to 1

Nm+2 rather than 1
Nm , since there are two more loops than encounter

stretches.
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The leading contribution to shot noise originates from the family of figure 1; it gives
x1 = −1. For the next-to-leading term, we have to consider x-quadruplets with two
2-encounters or one 3-encounter, contributing to x2 and depicted in figures 2(a)–(c), and
d-quadruplets which are related to a single 2-encounter and contribute to d1 (figure 2(d)). All
quadruplets in figure 2 involve mutually time-reversed loops and can exist in the orthogonal
case only (thus x2 = d1 = 0 in the unitary case). Note that if we interchange the two leads, or
the pairs (α, γ ) and (β, δ), or the trajectories α and γ , each family of quadruplets will be either
left topologically invariant or turned into an equivalent family making the same contribution to
the shot noise. Only one representative of each such ‘symmetry multiplet’ is shown in figure 2,
with the number of equivalent families indicated by a multiplier. The sum of all contributions

gives x2 = 4, d1 = −2, and 〈Tr(t t †t t †)〉 = N1N2
N

− N2
1 N2

2
N3 + 4N2

1 N2
2

N4 − 2N1N2
N2 + O

(
1
N

)
. Together

with 〈Tr(t t †)〉 = N1N2
N

− N1N2
N2 + O

(
1
N

)
, we recover the second term in (1).

For higher orders in 1
N

, we must collect all families of trajectory quadruplets. We had
previously established a method for counting families of pairs of periodic orbits differing in
encounters, based on permutation theory [2]. The families of orbit pairs thus obtained can
be turned into the families of trajectory quadruplets needed now, simply by cutting each pair
twice, inside loops. One can show that if one and one only of the loops cut is traversed in the
opposite sense in the orbits of the pair, the resulting quadruplet is of type x, and otherwise of
type d. Using this method we obtain

xm =




(−1)m − 1

2
unitary

(−1)m
3m − 1

2
orthogonal

dm =




(−1)m + 1

2
unitary

(−1)m
3m + 1

2
orthogonal.

(10)

The proof, based on a recursion derived in [2], will be given elsewhere. Summing over m, we
get the shot noise

P =




N2
1 N2

2

N(N2 − 1)
unitary

N1(N1 + 1)N2(N2 + 1)

N(N + 1)(N + 3)
orthogonal,

(11)

valid to all orders in 1
N

and thus also for a few channels.
Weak magnetic field. In the presence of a weak magnetic field B, the power of shot

noise must interpolate between the orthogonal and unitary cases. A weak field increases the
action of each trajectory [4, 14] by the line integral e

c

∫
A · dq of the vector potential A.

Since that increment changes sign under time reversal a net contribution survives from all
loops and encounter stretches changing direction in (β, δ) relative to (α, γ ). Our above
diagrammatic rule is thus modified: each loop changing direction contributes 1

N(1+ξ)
with

ξ ∝ B2; each encounter contributes −N(1 + ξµ2) with µ being the number of its stretches
changing direction [4].

The leading contribution to shot noise, from quadruplets as in figure 1, remains unaffected
by the magnetic field. However, all quadruplets responsible for the next-to-leading term obtain
a Lorentzian factor 1

1+ξ
. (In figures 2(a), (c), and (d) one loop is traversed in time-reversed
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sense and µ = 0, whereas in figure 2(b) two loops are time-reversed and one encounter has
µ = 1.) We thus predict

P = N2
1 N2

2

N3
+

N1N2(N1 − N2)
2

N4(1 + ξ)
+ O

(
1

N

)
, (12)

in accordance with (1) for the limits ξ → 0 and ξ → ∞. If N1 = N2 = N/2 the second term
in (12) vanishes, and quadruplets involving more encounter stretches yield

P = N

16
+

1

N

1 + 8ξ + 4ξ 2 + 4ξ 3 + ξ 4

16(1 + ξ)4
+ O

(
1

N2

)
; (13)

the extension to O( 1
N6 ) will be given elsewhere.

Outlook. The semiclassical approach to transport opens a large field of experimentally
relevant applications. For instance, we have checked the trajectory quadruplets employed here
to also yield the universal conductance variance as well as the covariance of the conductance
at two different energies, both within and in between the orthogonal and unitary symmetry
classes.
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